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A complete macroscopic theory for compressible nematic-viscous fluid interfaces is developed and used to
characterize the interfacial elastic, viscous, and viscoelastic material properties. The derived expression for the
interfacial stress tensor includes elastic and viscous components. Surface gradients of the interfacial elastic
stress tensor generates tangential Marangoni forces as well as normal forces. The latter may be present even in
planar surfaces, implying that in principle static planar interfaces may accommodate pressure jumps. The
asymmetric interfacial viscous stress tensor takes into account the surface nematic ordering and is given in
terms of the interfacial rate of deformation and interfacial Jaumann derivative. The material function that
describes the anisotropic viscoelasticity is the dynamic interfacial tension, which includes the interfacial ten-
sion and dilational viscosities. Viscous dissipation due to interfacial compressibility is described by the aniso-
tropic dilational viscosity, and it is shown to describe the Boussinesq surface fluid appropriate for Newtonian
interfaces when the director is homeotropic. Three characteristic interfacial shear viscosities are defined ac-
cording to whether the surface orientation is along the velocity direction, the velocity gradient, or the unit
normal. In the last case the expression reduces to the interfacial shear viscosity of the Boussinesq surface fluid.
The theory provides a theoretical framework to study interfacial stability, thin liquid film stability and hydro-
dynamics, and any other interfacial rheology phenomena.

PACS numbgs): 64.70.Md, 68.10.Et, 61.30.Cz

[. INTRODUCTION crystal in a magnetic field taking into account the competi-
tion of molecular order in the bulk and at the surface were
Interfacial viscoelasticity is one of the foundational ele-interpreted using the concept of translational surface viscos-
ments of interfacial dynamics and interfacial rheoldgy5]. ity [18]. Thus no systematic theoretical characterization of
For interfaces between viscous Newtonian fluids it has beethe viscoelasticity of deforming and translating nematic in-
found that the main interfacial material properties are theerfaces has been performed. Such a theory is a prerequisite
interfacial tension, the interfacial dilational viscosity, and theto study capillary phenomena involving nematic liquid crys-
interfacial shear viscosity. These material properties entetal phases and will be presented in this paper.
into the description of a wide range of interfacial phenomena For the so-called Newtonian interface the appropriate
such as interfacial stability, thin liquid film hydrodynamics, model is the Boussinesq surface flyiti5] whose physical
thin liquid film stability, emulsion and foam rheolody]. predictions are embodied in the expression of interfacial
The surface physics of nematic liquid crystals is currentlystress tensor. As is well know,5] the interfacial linear
an active area of researf8—10] since many applications of momentum balance equation involves the surface gradient of
liquid crystalline materials involve multiphase systems,the interfacial stress tensor, and its normal component deter-
where interfaces play significant roles. The description ofmines the shape of the deforming interface, while its tangen-
dynamical interfacial phenomena involving nematic liquidtial component enters into the description of Marangoni
crystal phases requires, as in interfaces between Newtonidlows such as those present in thermocapillarity, diffusocap-
fluids, viscoelastic models that describe material propertiedlarity, and electrocapillarity. The Boussinesq interfacial
such as the dynamic interfacial tension and interfacial visstress tensor is aX2 symmetric, tangential tens¢t,5,19
cosities. Interfacial orientation phenomena and orientationaind as such it is unable to describe the anisotropic viscoelas-
transitions are well characterized experiment@ily-9] and ticity of nematic interfaces that arises due to the liquid crys-
theoretically[7-9,11-14. On the other hand, knowledge of talline orientational ordej20].
interfacial dissipative phenomena is less developed. A theory A hallmark of the bulk mechanical behavior of nematic
of the role of interfacial rotational viscosity on hydrody- liquid crystalline materials is the anisotropic character of the
namic out-of-plane orientational instabilities during shearviscoelastic modef21,22. The anisotropic Frank elasticity
flow of nematic liquid crystals has been givglb]. The role  is now well established and responsible for many pattern
of interfacial rotational dissipation on the wave length selecselection phenomena in the presence of external fl@8k
tion mechanism that occurs during magnetic reorientation oA well-known example is the splay-avoidance mechanism
thin films of nematic polymers has been stud{dd] and active in deformations of nematic polymers. Viscous
found to be consistent with experimental data. The interfaciahnisotropies are also well-characterized experimentally
rotational viscosity of a lyotropic liquid crystal in contact [20,22 and theoreticallyj22,24. One prominent example
with a glass substrate and subjected to a magnetic field hdgere is the ordering in magnitude of the three Miesowicz
been measured by postulating gliding of the director at theshear viscosities, where the largest flow resistance is ob-
surfacg17]. Certain measurements of the power spectrum ofained when the average molecular orientation is fixed along
thermal fluctuations of the free surface of a nematic liquidthe velocity gradient direction and the smallest when the
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average molecular orientation is fixed along the vorticity. Inshear viscosities when the average molecular orientation is
addition, the shear flow-alignment properties that dictatdixed along the surface velocity direction, the surface veloc-
whether the average orientation is close to the flow directiorty gradients, or the unit normal to th/| interface. Section
depends in part on the difference between two MiesowicaX presents the main conclusions.

shear viscosities. These few examples show the prominence

of anisotropic viscoelasticity in the bulk behavior of nematic Il. INTERFACIAL BALANCE EQUATIONS

liquid crystals.

It is expected that anisotropic Vi lasticity m | In this section we consider the interfacial torque balance
_'t1S expected that anisotropic viscoelasticity may play aequation and interfacial linear momentum balance equations
similarly prominent role in the interfacial behavior of inter-

. g S . . that govern the dynamics of the interfacial director orienta-
faces involving nematic “ql.“d crystals._The anisotropic elas'tion, and the shape of the deforming interface between a
tic nature of _nematic mterfac_es is well underStOOdnematic liquid crystalN) and an isotropic viscous fluid),
[7—9,13,14 but its consequences in the. presencelof deform'[mder isothermal conditions.
ing interfaces has not been systematically studied. Elastic
models for deforming nematic-viscous fluid interfaces have
already been propos¢#5—-29 and used to describe nemato-
capillarity phenomena such as bending stresses and Ma- The N/I interface is characterized by a unit normal
rangoni flowg28,29. In these previous models the interface directed from the nematic phase into the isotropic phase,
was considered to be incompressible and purely elastic. Th@hose mean curvature is given /]

presence of interfacial viscous modes and compressibility is . L . .

now well established1,5] and thus a more comprehensive H=—-3Vsk=3lsib=—315:Vsk=3(ky+kp), (1a)
model for nematic interfaces including compressibility and
anisotropic viscous dissipation is in order. The present paper b=—Vsk=ki& +kze, (1b)

builds on previous work on incompressible elastic nemati%hereVS=|S~V is the surface gradientg is the 2x2 unit
interface model$25-29 and adds the required compress- surface dyadich is the 2x2 symmetric surface curvature

ibility and dissipative elements to build a general wscoelastlcdyadm and wheréx;} and{e}, i=1,2 are the eigenvalues

model appropriate for compressible nematic-isotropic vis- . . . )
cous fluid interfaces, denoted below Wsl. It should be and eigenvectors di. The divergence ofs is a normal vec

. . . tor: Vg 1g=2Hk.
mentioned that a related rigorous themodynamic theory for At the N/l interface the nematic ordering is defined by the
two dimensional liquid crystals has been presented by Paq-

; hree-component orientation vector known as the director
enfuss and Muschik30,31]. _ o . .
s ) . [20], n=n (xg), wheren-n=1, andxg is the surface posi
The objectives of this paper af&) to derive a general - )
; : ) . L : tion vector. A useful decomposition, used below, of the sur
expression for the interfacial anisotropic viscoelastic stres§ : ST ) .
. . -~ 7. ““face director field into tangential and normal components is:
tensor for compressible interfaces between nematic I|qU|rl lenandn. —kk-n
crystals and isotropic viscous fluids, af) define and char- "™ 'S L '
acterize the main elastic, viscous, and viscoelastic material
properties of such interfaces.

The organization of this paper is as follows. Section Il The kinematic tensors needed to describeNlhkinterfa-
defines the geometric properties of 14 interface, and the cial dynamics are the>22 symmetric surface rate of defor-
objective kinematic measures that include the surface rate ghation tensoAS and the X2 antisymmetric surface vortic-
deformation tensor and the surface Jaumann derivative of thigy tensorWs, given by[1,5,19
nematic orientation field. It also presents the interfacial

A. Nematic-isotropic fluid interface

B. Kinematics of deforming interfaces

torque balance equation and the interfacial linear momentum AS=3(Vav2 1st1s:[Vav]T), (2
balance equation. It presents and discusses the interfacial s 1 0 0T
free energy density and defines the easy axiN/of Section W==3 (Vv lIg—Is [Vav©]), (2b)

lll presents a concise derivation of the interfacial elastic 0 I
stress tensor, identifies the tensiamorma) and bending whereVv” is the surface velocity field, and the supersciipt

stress components, and identifies the principal orientation %enotes the transposeb The Qecomposn!onsof the vellocny sur
which the bending stresses vanish for all possible parametri@C€ gradient tensar v into its symmetricA” and antisym-
cases. Section IV presents a characterization and discussif
of the nematic Marangoni and normal forces for all possible 01 _AS s

parametric cases. It identifies the normal forces actihgla VeVt Is= AT W, ©
interface of zero curvature. Section V presents a derivatioRyhere the unit surface dyadic is needed sifige® is a 2<3

of constitutive equations for the interfacial extra stress tensofansor, while AS,WS) are 22 tensors. The surface rate of

and interfacial viscous molecular field. Thermodynamic rejeformationAS and the surface vorticity tenswvS obey the
strictions on viscosity parameters are derived and consigy|iowing relations:

tency with the Bussinesq surface fluid is proved. Section VI

tric partsws is

presents a derivation of the dynamical interfacial tension and AS=1g-AS=AS.14=14-AS.Ig, (4a)
includes the development of an expression for its anisotropy.
Section VIl presents a derivation of the interfacial dilational AS.k=k-AS=0, (4b)

viscosity and includes the development of an expression for
its anisotropy. Section VIII presents the three interfacial WS=1g- WS=WS. Ig=145WS.Ig, (5a)
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WS. k=k-WS=0. (5b)  the relevant features d¥g for the present work. For a dis-
cussion ofF, please see Ref20].
The surface vorticity vectow® is related to the surface vor- The surface free energy densRy is given by[11-14
ticity tensorws by
Fs(n le): TO(T) + Tan(n‘ le);
= —eWS (6)

n-k, T)=7,(T)[n-k]2+ 74(T)[n-k]?, 12
and is a vector orthogonal to the interfatg: wS=0. Tarl )= m2(DIn-kI+ 7a(Dn-K] (12
_ The kinematic vector needed to describe director dynamgnere T is the temperaturer, is the isotropic interfacial
ics is the surface Jaumann derivative of the tangential COMynsion. and-

t of the directoNS [32] an IS the anisotropic contribution to the surface
ponent of the directo :

free energy, known as the anchoring energy. For low molar
mass nematic liquid crystals the isotropic surface interfacial

NS=Ig. ﬂ_ »3xn,, (7a9  tensionrgis of_the order of 10 ergs/cinwhile the anchori.ng
dt energyr,, varies from 10* to 1 erg/cm [7]. The nematic-
isotropic interface of low-molar mass materials has,aof
n=ls-n, (7D the order of 102 erg/cnt and appears to be of similar mag-

L _ _ S nitude than the anchoring ener§$3—34. No comprehen-
which is a two-component tangential vectd’=1s-N% In e data on interfacial energies and anchoring energies
the general cas&™ n,=n,-dn,/dt#0. The surface Jau- geemg tg be available for nematic main-chain and side-chain
mann derivative measures the rotation of the tangential COm;,\ymers. The director orientation that absolutely minimizes
ponent of the director relative to the background fluid. Sinc€po" g\ rface free energy density is known as the easy axis of

the only background fluid rotations are in the tangent planethe interface. For Eq12) the easy axes afd 3] the follow-
the only director rotations included in the Jaumann derivay,,.

tive are those qf the, component. Director rotations around (.i) 7,/27,>0 andr,>0, the easy axis is along the surface
a tangential axis are excluded from the surface Jaumann dﬁhd the orientation is known as planar:

Ev?(]tlive, indbaTka conzequence thel r?StrLCﬁONfIO that (i) 7,/27,>0 andr,<0, the easy axis is perpendicular to
olds n the bulk case does not apply In the surface case. yne gyrface and the orientation is known as homeotropic;
The director surface Jaumann derivative defined above is (iil) —1<7,/27,<0 and 7,<0, the easy axis is at an

[agz]gbjective tensor that obeys the following transformationob”que angle given by cos(k) = \/m;
: (iv) —1<7,/27,<0 and7,>0, the easy axis is along the
surface, while the homeotropic orientation is a local mini-
mum of F5. The expressiolil2) for Fg is sufficient to ex-
eplain all the interfacial orientations and transitions observed
in experimentg13].

NS=Qg- NS (8)

where Qg is an orthogonal tangential transformation. Sinc
AS andNS are objective they will appear in the constitutive
equations for the surface extra stress tensor and the viscous

molecular field, as discussed below. D. Interfacial linear momentum balance equation
At the N/I interface the linear momentum balance equa-
C. Interfacial torque balance equation tion, that generalizes the Laplace equation to nonequilibrium

The interfacial director torque balance equation is givencases' is given bj1,5],

by the balance of the surface elastic tordli€ and the sur- K (=N = Ve 154+ Ve tS 13
face viscous torqué®': ( )=Vstgt Vs 17, (13)

se+T=0 9) wheretN is the total stress tensor in the nematic phase at
’ N/I, t" is the total stress tensor in the isotropic fluid phase at
Ise=nxhe, 10a NI, t5 is the elastic surface stress tensor, &nis the vis-
cous “extra” surface stress tensor. The surface stress tensors
%= —nxh (10p  ae functions of the following fields:

S__ ;S . S_ ;S S NS
whereh; is the surface elastic molecular field, anflis the te=te(ls.nk); t=1(1s.,nA%N). (14

surface viscous molecular field. The elastic and viscous mOAs shown below. in the general case the elastic stress tensor
lecular fields b3 ,h) are three component vectors, with tan- ' 9

S . . .
gential (hg,h5)) and normal kg, ,hj,) components with tS is a 2<3 tensor whose gradients represent tangential and

: | elastic forces. The elastic tensgrobeys: t3=1
respect to the surface. The surface elastic molecularfifgfid "% e ) e 'S
P -t5. On the other hand; is a 2<2 tensol5,19] The viscous

iven b
J Y surface stress tenstf obeys:tS=1g-t5=t5- 13- 1s=1¢-t5-1;
. dFs dFy t>-k=k-t5=0. The decomposition of the interfacial momen-
hei=— an; an; | i (1D tum balance equation leads to the following tangential and

normal force balances:

whereFg is the surface free energy density, aRg is the LN S s
well-known Frank energy densif20]. We next summarize —k- (7 =t%) 1g= (Vg 1) - 15+ (Vs 1)) - 1s, (15
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—k-(tr=tN) - kk=(Vgt3)-kk + (Vg ) -kk, (16) Bys=—iy- (d7a,/dk), (22b

where the first balance equati¢iangential stregsdescribes

interfacial tangential Marangoni flows, and the secGmat-

mal stressbalance equation is used to find the shape of the

deforming interface. FoN/I interfaces the torque balance The bending coefficien{sB,3,B,5] are the projections of the

equation is Coup|ed to the linear momentum balance equéierivative of the interfacial free energy with reSpeCt to the

tion sincek andn appear in both equations. The viscoelas-Unit normal onto the unit surface vectors (;). The bend-

ticity of N/I is represented byt ,t5). ing coefficienty B3,B,;] are proportional to the amount of
In partial summary, Sec. Il shows that the interfacia|surface.energy storage When the dlreg:tor deV|'ates from its

torque and linear momentum balance equations that descril§@&Sy axis and to the orientation of the director with respect to

orientation and shape dynamics are coupled through the dibe interface. _ _

rector and the unit normal. The anchoring energy contributes TWO0 important properties of the elastic surface stress ten-

to both surface forces and surfaces torques. The easy axis 99" t0 be frequently used in the rest of the paper (iarthe

the surface depends on the relative sign and magnitudes 8fincipal orientations at which bending stresses vanish, and

the anchoring coefficients. The objective kinematic tensofil) the orientations corresponding to the extrema in bending

that describes surface distortions is the2symmetric rate  Stresses, as follows.

of deformation tensoAS, and the objective vector that de-

scribes the relative rotation of the director with respect to the A. Principal orientations

surface motion is the surface Jaumann derivakive These

basic results are used below to develop the expressions of tg% r-rgfepélanf%l;?jl ggetﬂéagﬁ?; g:; tgi?eecltétl)srtIgriseur:IZggnS;rZ'tsivﬁ2;1
components of the viscoelastic stress tensor.

the surface stress tensor is diagonal, that is, the elastic stress
tensor has only normaftensio) components. It turns out
that for nematic interfaces bending stresses vanish when nor-

The expression of the elastic surface stress tensor is fourf@al stresses achieve their extrema. This is a consequence of
basically by noting thaE = F(n-k) and by using the iden- the_ fact that th_e magnitudes of t.he normal stressesrafe
tity t5=14-t5. The surface elastic stress tensor is given pywhile the magnitudes of the bending stresses are proportional

the usual X2 symmetric interfacial tension contributiaf, ~ 1© d(7an)/dK. From the above discussion it follows that the
(normal stressesand the X3 anisotropic contributiortS principal orientations occur at the following surface director
eb

. orientations.
(bending stressgs (@) 75/274>0, 7,<0 and7,/2u,>0, 7,>0

d7a,/dk=[27,(k-n)+47(k-n)3]n. (23

[lI. NEMATIC ELASTIC SURFACE STRESS TENSOR

S__;S S
te_ten+teb' (178) n-k=1 (243)
t5,=Fdls. (17b)
n-k=0. (24b
To find the expression for the bending stresses we can use
the principle of virtual work. The change in surface free pq; these two sets of parametric conditions, normal stresses
energysF, due to a displacement is extrema and zero bending stresses occur at planar and ho-
meotropic director orientation.

oF= f t5y:(Vsu)TdS= f % ok dS. (18 (b) —1<15/27,4,<0, 7,<0 and— 1< 7,/27,<0, 7,>0
Using the fact that n-k=1, n-k=0, (254
Sk=—k-(Vsu)T, (19 [
we find that the bending stresses are giverf24~29 K-n==2/- 2_54 ' (250
tesb:_IS' (9;'|:n =—lg (d((jr:alr;) nk}. (20 For these two sets of parametric conditions, normal stress

extrema and zero bending stresses occur at the planar, ho-

Parametrizing théN/l interface with orthormal unit sur- meotropic, and oblique director orientations.

face base vectorsi{,i,), the normal and bending stresses

become B. Bending stress extrema
t8 =Fdiyis+inio], (21 The extrema in bending stresses is found by solving
en S[ 1'1 2 2] a dz(Tan)/deIO,
tgb: Blgi1k+ Bzgizk, (21b) (a ’7'2/27'4>0, 7,<0, and72/274>0, 7,>0
. - . r r 2 e
where the bending coefficienf8,5,B,3] are given by (k,n)zz[ _(_2_3 + _2_3) _g2 ]/8
T4 T4 Ta

Big= —i1-(d74,/dk), (229 (26)
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In this case there is only one stress extremum at a director (iii) —1<7,/27,<0 and 7,<0, the Marangoni force is
angle lying between the planar and homeotropic orientationdirected from the homeotropic and planar orientation regions
(b) —1<71,/274<0, 7,<0 and—1<7,/27,<0, 7,>0 towards the obliqu¢cosf- k) =\ — 7o/27,4] region.
(iv) —1<7,/27,<0 and 7,>0, the Marangoni force is

(KNe. 2= — 2_3 N 2_3 2—82 v 8 dire_cted from the obliqchos(n-k.)=\/—72/274] origntatipn
s T\ s ' region towards the homeotropic and planar orientation re-

gions.
As the name implies bending stresses generate only nor-
There are two director orientations of zero bending stresgnal forcesfy, ,
between their three extrema.
In partial summary, Sec. Il provides a concise derivation d7an
of the surface elastic stress tensor, and characterizes the ten- fm:{ _2H( dk 'k) Vs
sion and bending components for the different anchoring

cases. The principal directions of the surface elastic stresgq exists because nematics have an anisotropic surface ten-

dTan)
K ]k (32

tensor are derived and discussed. sion
IV. ANISOTROPIC INTERFACIAL ELASTICITY: d7an
MARANGONI AND NORMAL FORCES for =g L~ Vern—2H(n-k) ]k
The physical significance of the normal and bending com- d?7,,
ponents of the surface stress tensor is clear and evident when - W[knzvsn— nn:bik. (33

one considers the net surface forces engendered by their sur-

face gradients: In the presence of interfacial director gradients the normal

force f,,, exists even in the absence of curvatuk¢=0b

f=Vg-t= H;h—adk.(vsnf g =0), and its magnitudeém‘pI in this case is
n- anar
surface gradients in normal stresses dTan dzTan .
foi [plana= — W(VS' n)— W(kn.Vsn). (34

+

d7an d7an
ZH( s -k) VS~( ik )}k (29)
surface gradients in bending stresses Thus we find the surprising result planar interfaces (
=0,b=0) between nematics and isotropic materials may
The normal stressest(,t,;) generate tangential Ma- have a normal pressure jump if the surface director orienta-
rangoni forcedy tion is space-dependent. A similar observation has been pre-
sented previously by Papenfuss and MusdB who note

drap that normal stresses may not vanish even in the case of pla-
fn:[ dn-k k'(VSn)T]'IS’ 29 nhar interfaces.
In partial summary, Sec. V shows the main characteristics
as well as the usual normal forcgs of the tangential and normal elastic forces. It is shown that
the tangential Marangoni forces arise due to interfacial direc-
fo, ={2HFgIk. (30)  tor gradients. Normal forces may persist even in planar in-

terfaces if interfacial director gradients exist. Thus even a

The tangential forces,, are the nematic Marangoni forces PlanarN/I interface may accommodate pressure jumps.
[28,29 caused by surface gradients of the director and are

independent of curvature. The normal forégsexist only in V. INTERFACIAL ENTROPY PRODUCTION
the presence of curvature, as for isotropic materials. For the AND CONSTITUTIVE EQUATIONS
anchoring energy,, given in Eq.(12) the Marangoni force

In this section constitutive equations for the surface extra
stress tensdf; and the surface viscous molecular figlplare
d derived for isothermal, compressibld/l interfaces. As
fn”=( an-K k~(VSn)T} g noted in the literatur¢l], incompressible interfaces are rare
or non-existent and surface dilational effects must be taken
={(27y[n-K]+ 47 n-Kk]}k-(Vsn)T}-1s. (31  into acgount. To find expressions for the surface extra stress
tensort] and the surface viscous molecular figffiwe iden-

Assuming thah=n(x,), and that ax, increases by a dis- tify the forces and fluxes that contribute to the product of
tanceL the director rotates from planar to homeotropic, thetemperature times the surface rate of entropy production,
following Marangoni force phenomenology arises. as follows
(i) 79/27,>0 and,>0, the Marangoni force is directed
from the planar to homeotropic orientation region. . ﬂ RS -(kk~ di)
(ii) 7»/27,>0 and7,<0, the Marangoni force is directed ST dt vi dt )’
from the homeotropic to the planar orientation region. (35

fny IS given by

Tan

A=t AS+tS,:WS+hS (

vl
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wheret}, is the surface symmetric extra stress tengprjs
the surface asymmetric extra stress tensfjs the parallel
component of the surface viscous molecular field!/dt is
the total derivative of the parallel director component,

%=@+VS~V n (369
dt 4t S

hS, is the normal component of the surface viscous molecu

lar field, dn, /dt is the total derivative of the normal director
component,

dn, dn; s
W_W_’_V ~Vsnl, (373)
n, =kk-n. (37b

The 2x2 anitsymmetric extra stress tensy can be written
in terms of the tangential viscous molecular figl :

ny—= nuhid, (38)

i

1
ta=5[hy

which shows that when=k, the interface is Newtonian and

t5,=0. Eliminatingt],, A becomes

dn
A=t55:ASHhG NS+, Kk~

Vv

(39

which shows that only the tangential fluxeg.(hS,) are

coupled. Expanding the tangential fluxe&>(,h"") in terms
of the tangential forcesA®,NS)

S _14S AS, ~SInS
t0si; = Hij A+ GilkNi (40)

h§m=eﬁzkA§j+ MﬁNjS, (41

where by Onsager reciprocal relations the matrix coefficients

satisfy Hi, =Higi; 5 Gik=Gpj, and M{=M;5 . Imposing
symmetry restrictions of forces and fluxes give!flﬁkI
='Hj‘°;k| = !_'!Sjlk Gﬁﬁ=GﬁiGﬁﬁ=Gﬁﬁ Expressing the ma-
trix coefficients in terms of, andlg we find
tos= agASimnynyny+ 3 Y5 NS+ nNS+1(NS-ny) ]
+ afAS-i- %(a§+ ag)(As n”n” + n”n“ . As)

+asnn(n;- NS+ B2(15:AS)+ B3 nyny (1 5:AS)

+lg(nyny :A®)], (42
s
h3i= ¥2AS- 0+ ¥3 NS+ afny(njn; 1 AS) + %nII(IS' A®).
(43

The expression fot, satisfies the restrictions on the sym-
metric component of the surface stress tensor, nangly:
=1 15s=15s 1= 155 . The expression fonS, also satis-
fies the restrictionh$ =Is-hS,. The coefficients{a7;i
=1,...,7%{%, ¥ }1{B37.B5 have units of surface viscosi-

VISCOELASTIC THEORY FOR NEMATIC INTERFACES

1545

ties and are analogous to the Leslie coefficid2@|. The
coefficient yisu is the tangential rotational viscosity already
discussed in the literatufd5-17.

The normal component of the molecular fidig, is un-
coupled to the tangential viscous flow process

dn,

at (44)

h\i = 'Yi KKk -

whereyﬁ is the normal rotational viscosity. The use of two
different rotational viscosities;ﬁ ,yﬁ) was also part of the
Kleman-Pikin mode[15] for surface dissipation. The anti-
symmetric part of the extra stress tensfy computed from

t5.=[h§n—nh5 112 is

S

s
Y2 Y
> (AS-nyn—nyn;- AS) +

S
t 2

va

(N°n;—nN®). (45)

Using the relations

(469

Ss_ s s
YT @3 @y,

S_ s, S_ S_ s
Yo=aztay=ag— as,

(46b)
where the second inequality follows from Onsagers relation,
the total surface extra stress tensprand surface viscous
molecular fieldh$ become

tS_

SAS. S S SN\IS SAS S S
V—alA .n”n”n”n”+ azn”N +Of3N nH+CZ4A +Of5anH'A

+agAS i+ asniny(n; - NS)+ Bl g(15:AS)

+B5lniny(1s:AS) +1g(nyn; :AS)], (47)

s
Y2
h$=y5A- ny+ ¥ NS+ agn(nyn; :AS) + > n(ls:A%)

(48)

The total number of independent surface viscosity coeffi-
cients is nine. For incompressible interfacés: A=0) the
number reduces to seven. For incompressible interfaces and
planar orientation ;- N°=0) the number reduces to five as
for the bulk nematodynamics equations. Equatiohd and
(48) contain the necessary information to solve dynamical
problems involving deformind\/I interfaces.

The surface rate of entropy production is positive definite
if the following inequalities are obeyed:

Haj+2a5+ ag+ ag) + B3+ B5=0, (49)
S
o
7“ +5=0, (50)
205+ ag+ag=0, (51
v3=0, (52)
'yi_ =0, (53
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(2a3+ ag+ ag) vi— (¥3)%=0, (54)  orientation. In this case the surface director orientation is
along the unit normain=k, and thereforen,= 0. Homeotro-
a3=0, (55  pic surface director orientation results in surface isotropy be-

cause the plane of transverse isotropy is the interface itself.

where to obtain the inequalities we used a previously givermhus for hometropic alignment the present model should be-
methodology{36]. The thermodynamic inequaliti€50) and  come equivalent to the classical Boussinesq surface fluid
(55) of the Boussinesq surface fluidl,5] are recovered when model. Indeed by setting,=0 in Eq. (47) we find that re-
all coefficients except ofr; and 85 are set to zero. The sulting expression is identical to E¢6), and that Eq(38)
inequalities are also consistent with those of bulk incom-yields: tfaz 0. Thus we can assert that for hometropic sur-
pressible nematics where N=0, trA=0, andB=85=a5  face orientation the interfacial viscous modes are identical to
=0. Inequalities(49) and (50) are the dilational wscosmes those describe by the classical Boussinesq(&6).
(see Sec. VIl of the N/I interface when the director is tan- In partial summary, Sec. V presents the surface rate of
gential and normal, respectively. entropy production, and identifies the couplings between

The Boussinesq surface fluid,5] is recovered in the 2X2 tangential tensors and two component tangential vec-
present theory by setting all the interfacial viscosities in Eqtors. Constitutive equations for the surface extra stress tensor
(47) exceptaf and ﬁf equal to zero, and the surface extraand the surface viscous molecular field are found by expand-

stress tensor becomes ing forces and fluxes and using irreversible thermodynamics
principles. Inequalities of the surface viscosities are obtained
t§| BoussinesT aﬁASJr ﬂfl S(1:A3), (56) and shown to be consistent with the Boussinesq surface fluid.
The extra stress tensor is shown to be consistent with the
wherea3/2 is the interfacial shear viscosity and Boussinesq constitutive equation appropriate for the New-
ts I oS tonian interface.
"= 2(15:A% 24+'8§’ 57 VI. DYNAMIC INTERFACIAL TENSION

is known as the dilational viscosity. For Newtonian inter-  Dynamic surface tensiom is a measure of the local in-
faces it is found that the interfacial dilational viscosity is of tensity of tension on a deforming surface and is given by the
the same order of magnitude as the interfacial shear viscositwerage normal surface strgds:
[1]. Thus in contrast to bulk behavior, assuming compress-
ible interfaces appears to be just as necessary for Newtonian =
and nematic interfaces.

Another check into the consistency of the present modeRccording to previous results the total surface stress tensor
can be obtained by considering homeotropic surface directdor a N/I interface is

ls:tS. (58)

N

tS: afAS anHan” + agn"NS-f- agNSnH + CYZAS+ a?n”n” . AS+ agAS n”nH + a?n”n”( nH . NS) + Bfl S( I S . AS)

( d7an
d(n-k)

The dynamic interfacial tension contains in addition to the thermodynamic interfacial ten$tgn nonequilibrium contribu-

tions arising from compressible and director/flow coupling effects. For the present anisotropic viscoelastic stress tensor the
dynamic interfacial tensiom is

nk|+Fgls. (59

+ B3NNy (Is:Ag) +1g(nn; :AS) ] —1g

s s s
7=Fg+t %(Asﬂ"unu)(nu'”u)Jr %('siAS)‘F%(as”Lae)(AS an”)+a—(nH N (- n3) + y3(NS.n)) + B3(15:A5)

S

+%[(nn'”\\)(|55A5)+2(n||nu3AS)]- (60)

Thus the dynamic interfacial tension is anisotropie: 7(n). Its two characteristic values are the tangenti@) @nd normal
(7,) dynamic interfacial tensions:

o 1 oy B3
=70t 5 (aS+ag+ag+2B5)(ASnn)) + +,31+ - |(15:A9), (61)
3
?L:TO+TZ+ 7'4+ ?"’Bf (lS:AS). (62)

The anisotropy in the dynamic interfacial tensié contains the following static and dynamic contributions,
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S

AT=T— 7=+ 74— 3 (ai+ aS+ ag+ 2ﬁ§><AS:nn>—( (15:AS). (63)

£z
2

ThusA'7 is a representative measure of the anisotropic sur- In partial summary, in Sec. VIl the dilational viscosity of

face viscoelasticity oN/I interfaces since it is a function of the N/I interface has been defined, and its characteristic an-

(Tan(1),AS,n). isotropy has been derived. A method for its measurement has
In partial summary, in Sec. VI the dynamic interfacial been suggested.

tension for aN/I interface has been defined, its expression

has been derived and used to characterize the basic aniso- VIII. INTERFACIAL SHEAR VISCOSITIES

tropic viscoelasticity of theN/I interface. ) ) ) ) -
In bulk nematic shear flows the Miesowicz viscosities are

measures of the viscous anisotropj@®,24]. For example
VII. INTERFACIAL DILATIONAL VISCOSITIES for a simple shear flow defined by the velocity field

Dilational interfacial dissipation in theN/I interface _ -
arises during expansion or contraction flow, as it occurs for V()= (V0.0 vi=vy €9
example during gas bubble growth or bubble shrinkage in ghere 4 is the constant shear rate, the following three
nematic liquid crystal. For example, injecting a gas at a rat§iesowicz viscositiesy, ,i =1,2,3 arise
Q into a nematic liquid crystal using a thin capillary tube e
creates an expanding gas bubble. As the nematic/gas inter- ty= v, 1=1,2,3, (70)
face grows, elasticity is stored and energy is dissipated by
the growing interface. If gas flows into the bubble of radius where t,, is the nematic shear stress, and the valug of
at a volumetric flow rat&, the surface rate of deformation defines the director orientation along tkey, and z axis,

tensor and its trace are given [/ respectively. In this experiment the director is fixed by using
a sufficiently strong magnetic field. For rodlike nematic lig-
< Q uid crystals the following viscosity orderings are predicted
AT=ls 3 (64)  [24] and measuref20]
o 72> 13> Ny (71)
AS:lg= s (65) As similar situation arises in interfacial planar shear flows

on planar interfaces, and different shear viscosities are pre-
dicted according to whether the director is aligned along the
velocity direction, the velocity gradient direction, or the unit
normal. We consider a planar interface spanned byxtlge
faces the dilational viscosity is anisotropic and a function Ofaxes, with 2 un|t' normak along thez dlrgct|on. As n thg :
bulk case we define the following interfacial shear viscosities

the director orientation: »°= »*(n). The orientation- (i) »3:n parallel to the surface velocityx) direction; (ii)
dependent dilational viscosity is characterized by the tangen- 7N P ) . L
:n parallel to the surface velocity gradiey) direction;

tial dilational viscosity®, and the normal dilational viscos- 72 S T
L s Y7 (i) 73:n parallel to the surface vorticitgz) direction.
ity %7, given by

The surface velocity field for an homogeneous simple
shear flow in a planar interface is

where() is the fractional rate of dilation of the bubble sur-
face. To compute the dilational viscosiiy’ we replace Egs.
(64) and(65) into Eq.(57). Not unexpectedly, foN/I inter-

nS(n=n)=;(ai+2a3+ ag+ad) + B3+ 65,  (66)
VO=vi=(7%,0,0). (72)

S
o
nf(n=k)=74+,8f, (677  The nonzero components oA® and NS are AR =AJ,
= yI2;NP=—¥°n;/2j=x,y. Substituting into the surface

s . . . ) extra stress tensor we find the following three surface shear
where 77 is, as expected, identical to the Newtonian resultyjscosities:

given in Eq.(57). The anisotropy in the dilational viscosity,

or equivalently, its deviation from the Newtonian case is 73=3%(a3+ a5+ aj), (733
S__,S_1 S+ S+ S+ S 68 S_1/_ S+ S+ S (73b)
= =z(aitastag)+B63. (68) 7= 3(—az+aztaz),
Measurements of the dilational viscosities, including surface s_ % (730
waves, droplet deformation, and maximum bubble pressure (E

method are discussed in the literatfiid. The bubble pres-
sure method is the most accurate and the theory behind theredicting the ordering in terms of magnitudes of the surface
experiment is basically that given in this section. viscosities requires a mesoscopic model of interfacial vis-
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cosities, which has not yet been developed. Since the surfa¢epic, and hence depends on the interfacial director orienta-
shear viscosities are functions of the nematic surface scaldion. The dilational viscosity of the nematic-isotropic viscous
order parametef11,17 it is likely that a model based on fluid interface is another anisotropic material property that
excess viscosities will predict ordering reversals in the orderdescribes dissipation modes during inflation or deflation, as
ing of the magnitudes of the three shear viscosities whein bubble growth or collapse. It is shown that the anisotropy
compared to the bulk cagéEq. (71)]. arises because viscous resistance to interface growth or

In partial summary, Sec. VIl presents the interfacial shrinkage depends on the director orientation; when the di-
shear viscosities, and in analogy to the bulk nematic sheaector is orthogonal the well-known Boussinesq surface fluid
flow case, it defines the three basic shear viscosities for eesult is recovered. Finally, interfacial shear viscosity
planar surface shear flow, when the director is aligned alongnisotropies are analogous to the Miesowicz shear bulk flow
the velocity direction, the velocity gradient direction, and theviscosities, and three basic material properties emerge ac-
unit normal. It is noted that to determine the ordering of thecording to whether the director is oriented along the interfa-
magnitudes of the interfacial shear viscosities requires a mesial velocity direction, its gradients, or the unit normal, re-
soscopic model based on excess viscosities. spectively.

The theoretical framework of anisotropic viscoelasticity
of nematic-viscous fluid interfaces presented here, including
) o o ~the interfacial tension, dynamical interfacial tension, interfa-
A theory for anisotropic viscoelasticity of nematic- ¢ja| shear viscosities, interfacial dilational viscosities, and
isotropic viscous fluid interface has been derived and used tfhngential Marangoni forces provides the necessary tools to
identify the interfacial material properties and to characterizeneasure interfacial material properties and to analyze inter-
the principal elastic, viscous, and viscoelastic responseycial phenomena such as interfacial instabilities, thin liquid

modes. The anisotropic component of t_he surface tension igm hydrodynamics, and nematic freely suspended films and
shown to generate tangential Marangoni elastic forces and ggams.

well as normal forces. Normal forces may exist even under
planar interfaces, implying that pressure jumps may exist on
flat interfaces. The viscoelastic nature of the nematic-
isotropic viscous fluid interface is embodied by the dynamic
surface tension, a material property that consists of the usual Financial support of the Natural Sciences and Engineering
interfacial tension terms as well as interfacial dilational vis-Research CounciNSERQ of Canada is gratefully acknowl-
cosities contributions. The dynamic surface tension is aniscedged.

IX. CONCLUSIONS
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