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Viscoelastic theory for nematic interfaces
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~Received 17 June 1999!

A complete macroscopic theory for compressible nematic-viscous fluid interfaces is developed and used to
characterize the interfacial elastic, viscous, and viscoelastic material properties. The derived expression for the
interfacial stress tensor includes elastic and viscous components. Surface gradients of the interfacial elastic
stress tensor generates tangential Marangoni forces as well as normal forces. The latter may be present even in
planar surfaces, implying that in principle static planar interfaces may accommodate pressure jumps. The
asymmetric interfacial viscous stress tensor takes into account the surface nematic ordering and is given in
terms of the interfacial rate of deformation and interfacial Jaumann derivative. The material function that
describes the anisotropic viscoelasticity is the dynamic interfacial tension, which includes the interfacial ten-
sion and dilational viscosities. Viscous dissipation due to interfacial compressibility is described by the aniso-
tropic dilational viscosity, and it is shown to describe the Boussinesq surface fluid appropriate for Newtonian
interfaces when the director is homeotropic. Three characteristic interfacial shear viscosities are defined ac-
cording to whether the surface orientation is along the velocity direction, the velocity gradient, or the unit
normal. In the last case the expression reduces to the interfacial shear viscosity of the Boussinesq surface fluid.
The theory provides a theoretical framework to study interfacial stability, thin liquid film stability and hydro-
dynamics, and any other interfacial rheology phenomena.

PACS number~s!: 64.70.Md, 68.10.Et, 61.30.Cz
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I. INTRODUCTION

Interfacial viscoelasticity is one of the foundational e
ments of interfacial dynamics and interfacial rheology@1–5#.
For interfaces between viscous Newtonian fluids it has b
found that the main interfacial material properties are
interfacial tension, the interfacial dilational viscosity, and t
interfacial shear viscosity. These material properties e
into the description of a wide range of interfacial phenome
such as interfacial stability, thin liquid film hydrodynamic
thin liquid film stability, emulsion and foam rheology@1#.

The surface physics of nematic liquid crystals is curren
an active area of research@6–10# since many applications o
liquid crystalline materials involve multiphase system
where interfaces play significant roles. The description
dynamical interfacial phenomena involving nematic liqu
crystal phases requires, as in interfaces between Newto
fluids, viscoelastic models that describe material proper
such as the dynamic interfacial tension and interfacial v
cosities. Interfacial orientation phenomena and orientatio
transitions are well characterized experimentally@7–9# and
theoretically@7–9,11–14#. On the other hand, knowledge o
interfacial dissipative phenomena is less developed. A the
of the role of interfacial rotational viscosity on hydrod
namic out-of-plane orientational instabilities during she
flow of nematic liquid crystals has been given@15#. The role
of interfacial rotational dissipation on the wave length sel
tion mechanism that occurs during magnetic reorientation
thin films of nematic polymers has been studied@16# and
found to be consistent with experimental data. The interfa
rotational viscosity of a lyotropic liquid crystal in conta
with a glass substrate and subjected to a magnetic field
been measured by postulating gliding of the director at
surface@17#. Certain measurements of the power spectrum
thermal fluctuations of the free surface of a nematic liq
PRE 611063-651X/2000/61~2!/1540~10!/$15.00
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crystal in a magnetic field taking into account the compe
tion of molecular order in the bulk and at the surface we
interpreted using the concept of translational surface visc
ity @18#. Thus no systematic theoretical characterization
the viscoelasticity of deforming and translating nematic
terfaces has been performed. Such a theory is a prerequ
to study capillary phenomena involving nematic liquid cry
tal phases and will be presented in this paper.

For the so-called Newtonian interface the appropri
model is the Boussinesq surface fluid@1,5# whose physical
predictions are embodied in the expression of interfac
stress tensor. As is well known@1,5# the interfacial linear
momentum balance equation involves the surface gradien
the interfacial stress tensor, and its normal component de
mines the shape of the deforming interface, while its tang
tial component enters into the description of Marango
flows such as those present in thermocapillarity, diffusoc
illarity, and electrocapillarity. The Boussinesq interfac
stress tensor is a 232 symmetric, tangential tensor@1,5,19#
and as such it is unable to describe the anisotropic viscoe
ticity of nematic interfaces that arises due to the liquid cr
talline orientational order@20#.

A hallmark of the bulk mechanical behavior of nema
liquid crystalline materials is the anisotropic character of
viscoelastic modes@21,22#. The anisotropic Frank elasticity
is now well established and responsible for many patt
selection phenomena in the presence of external fields@23#.
A well-known example is the splay-avoidance mechani
active in deformations of nematic polymers. Visco
anisotropies are also well-characterized experiment
@20,22# and theoretically@22,24#. One prominent example
here is the ordering in magnitude of the three Miesow
shear viscosities, where the largest flow resistance is
tained when the average molecular orientation is fixed al
the velocity gradient direction and the smallest when
1540 ©2000 The American Physical Society
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PRE 61 1541VISCOELASTIC THEORY FOR NEMATIC INTERFACES
average molecular orientation is fixed along the vorticity.
addition, the shear flow-alignment properties that dict
whether the average orientation is close to the flow direc
depends in part on the difference between two Miesow
shear viscosities. These few examples show the promine
of anisotropic viscoelasticity in the bulk behavior of nema
liquid crystals.

It is expected that anisotropic viscoelasticity may play
similarly prominent role in the interfacial behavior of inte
faces involving nematic liquid crystals. The anisotropic el
tic nature of nematic interfaces is well understo
@7–9,13,14# but its consequences in the presence of defo
ing interfaces has not been systematically studied. Ela
models for deforming nematic-viscous fluid interfaces ha
already been proposed@25–29# and used to describe nemat
capillarity phenomena such as bending stresses and
rangoni flows@28,29#. In these previous models the interfa
was considered to be incompressible and purely elastic.
presence of interfacial viscous modes and compressibilit
now well established@1,5# and thus a more comprehensiv
model for nematic interfaces including compressibility a
anisotropic viscous dissipation is in order. The present pa
builds on previous work on incompressible elastic nema
interface models@25–29# and adds the required compres
ibility and dissipative elements to build a general viscoela
model appropriate for compressible nematic-isotropic v
cous fluid interfaces, denoted below asN/I . It should be
mentioned that a related rigorous themodynamic theory
two dimensional liquid crystals has been presented by P
enfuss and Muschik@30,31#.

The objectives of this paper are~1! to derive a genera
expression for the interfacial anisotropic viscoelastic str
tensor for compressible interfaces between nematic liq
crystals and isotropic viscous fluids, and~2! define and char-
acterize the main elastic, viscous, and viscoelastic mate
properties of such interfaces.

The organization of this paper is as follows. Section
defines the geometric properties of theN/I interface, and the
objective kinematic measures that include the surface rat
deformation tensor and the surface Jaumann derivative o
nematic orientation field. It also presents the interfac
torque balance equation and the interfacial linear momen
balance equation. It presents and discusses the interf
free energy density and defines the easy axis ofN/I . Section
III presents a concise derivation of the interfacial elas
stress tensor, identifies the tension~normal! and bending
stress components, and identifies the principal orientatio
which the bending stresses vanish for all possible param
cases. Section IV presents a characterization and discus
of the nematic Marangoni and normal forces for all possi
parametric cases. It identifies the normal forces acting aN/I
interface of zero curvature. Section V presents a deriva
of constitutive equations for the interfacial extra stress ten
and interfacial viscous molecular field. Thermodynamic
strictions on viscosity parameters are derived and con
tency with the Bussinesq surface fluid is proved. Section
presents a derivation of the dynamical interfacial tension
includes the development of an expression for its anisotro
Section VII presents a derivation of the interfacial dilation
viscosity and includes the development of an expression
its anisotropy. Section VIII presents the three interfac
e
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shear viscosities when the average molecular orientatio
fixed along the surface velocity direction, the surface vel
ity gradients, or the unit normal to theN/I interface. Section
IX presents the main conclusions.

II. INTERFACIAL BALANCE EQUATIONS

In this section we consider the interfacial torque balan
equation and interfacial linear momentum balance equat
that govern the dynamics of the interfacial director orien
tion, and the shape of the deforming interface betwee
nematic liquid crystal~N! and an isotropic viscous fluid~I!,
under isothermal conditions.

A. Nematic-isotropic fluid interface

The N/I interface is characterized by a unit normalk,
directed from the nematic phase into the isotropic pha
whose mean curvature is given by@1#

H52 1
2 ¹S•k5 1

2 IS :b52 1
2 IS :¹Sk5 1

2 ~k11k2!, ~1a!

b52¹Sk5k1e11k2e2 , ~1b!

where¹S5IS•¹ is the surface gradient,I S is the 232 unit
surface dyadic,b is the 232 symmetric surface curvatur
dyadic, and where$k i% and $ei%, i 51,2 are the eigenvalue
and eigenvectors ofb. The divergence ofI s is a normal vec-
tor: ¹S•IS52Hk.

At the N/I interface the nematic ordering is defined by t
three-component orientation vector known as the direc
@20#, n5n (xS), wheren•n51, andxS is the surface posi-
tion vector. A useful decomposition, used below, of the s
face director field into tangential and normal components
ni5I S•n andn'5kk•n.

B. Kinematics of deforming interfaces

The kinematic tensors needed to describe theN/I interfa-
cial dynamics are the 232 symmetric surface rate of defor
mation tensorAS and the 232 antisymmetric surface vortic
ity tensorWS, given by@1,5,19#

AS5 1
2 ~¹Sv0

•IS1IS•@¹Sv0#T!, ~2a!

WS5 1
2 ~¹Sv0

•IS2IS•@¹Sv0#T!, ~2b!

wherev0 is the surface velocity field, and the superscriptT
denotes the transpose. The decomposition of the velocity
face gradient tensor¹Sv0 into its symmetricAS and antisym-
metric partsWS is

¹Sv0
•IS5AS1WS, ~3!

where the unit surface dyadic is needed since¹SvS is a 233
tensor, while (AS,WS) are 232 tensors. The surface rate o
deformationAS and the surface vorticity tensorWS obey the
following relations:

AS5IS•AS5AS
•IS5IS•AS

•IS , ~4a!

AS
•k5k•AS50, ~4b!

WS5IS•WS5WS
•IS5IS•WS

•IS , ~5a!
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WS
•k5k•WS50. ~5b!

The surface vorticity vectorvS is related to the surface vor
ticity tensorWS by

vS52e:WS ~6!

and is a vector orthogonal to the interface:IS•vS50.
The kinematic vector needed to describe director dyna

ics is the surface Jaumann derivative of the tangential c
ponent of the directorNS @32#:

NS5IS•
dni

dt
2vS3ni , ~7a!

ni5IS•n, ~7b!

which is a two-component tangential vector:NS5IS•NS. In
the general caseNS

•ni5ni•dni /dtÞ0. The surface Jau
mann derivative measures the rotation of the tangential c
ponent of the director relative to the background fluid. Sin
the only background fluid rotations are in the tangent pla
the only director rotations included in the Jaumann deri
tive are those of theni component. Director rotations aroun
a tangential axis are excluded from the surface Jaumann
rivative, and as a consequence the restrictionn•N50 that
holds in the bulk case does not apply in the surface cas

The director surface Jaumann derivative defined abov
an objective tensor that obeys the following transformat
@32#:

N̄S5QS•NS ~8!

whereQS is an orthogonal tangential transformation. Sin
AS andNS are objective they will appear in the constitutiv
equations for the surface extra stress tensor and the vis
molecular field, as discussed below.

C. Interfacial torque balance equation

The interfacial director torque balance equation is giv
by the balance of the surface elastic torqueGse and the sur-
face viscous torqueGsv:

Gse1Gsv50, ~9!

Gse5n3he
s , ~10a!

Gsv52n3hv
s ~10b!

wherehe
s is the surface elastic molecular field, andhv

s is the
surface viscous molecular field. The elastic and viscous
lecular fields (he

s ,hv
s) are three component vectors, with ta

gential (hei
s ,hvi

s ) and normal (he'
s ,hv'

s ) components with
respect to the surface. The surface elastic molecular fieldhse

given by

hei
s 52

]Fs

]ni
2

]Fb

]ni , j
kj , ~11!

whereFS is the surface free energy density, andFb is the
well-known Frank energy density@20#. We next summarize
-
-

-
e
e,
-

e-

is
n

us

n

o-

the relevant features ofFS for the present work. For a dis
cussion ofFb please see Ref.@20#.

The surface free energy densityFS is given by@11–14#

FS~n•k,T!5t0~T!1tan~n•k,T!,

tan~n•k,T!5t2~T!@n•k#21t4~T!@n•k#4, ~12!

where T is the temperature,t0 is the isotropic interfacial
tension, andtan is the anisotropic contribution to the surfac
free energy, known as the anchoring energy. For low mo
mass nematic liquid crystals the isotropic surface interfa
tensiont0 is of the order of 10 ergs/cm2, while the anchoring
energytan varies from 1024 to 1 erg/cm2 @7#. The nematic-
isotropic interface of low-molar mass materials has at0 of
the order of 1022 erg/cm2 and appears to be of similar mag
nitude than the anchoring energy@33–34#. No comprehen-
sive data on interfacial energies and anchoring ener
seems to be available for nematic main-chain and side-c
polymers. The director orientation that absolutely minimiz
the surface free energy density is known as the easy ax
the interface. For Eq.~12! the easy axes are@13# the follow-
ing:

~i! t2/2t4.0 andt2.0, the easy axis is along the surfac
and the orientation is known as planar;

~ii ! t2/2t4.0 andt2,0, the easy axis is perpendicular
the surface and the orientation is known as homeotropic

~iii ! 21,t2/2t4,0 and t2,0, the easy axis is at an
oblique angle given by cos(n•k)5A2t2/2t4;

~iv! 21,t2/2t4,0 andt2.0, the easy axis is along th
surface, while the homeotropic orientation is a local mi
mum of FS . The expression~12! for FS is sufficient to ex-
plain all the interfacial orientations and transitions observ
in experiments@13#.

D. Interfacial linear momentum balance equation

At the N/I interface the linear momentum balance equ
tion, that generalizes the Laplace equation to nonequilibri
cases, is given by@1,5#,

2k•~ t12tN!5¹S•te
S1¹S•tv

S , ~13!

where tN is the total stress tensor in the nematic phase
N/I , t l is the total stress tensor in the isotropic fluid phase
N/I , te

S is the elastic surface stress tensor, andtv
S is the vis-

cous ‘‘extra’’ surface stress tensor. The surface stress ten
are functions of the following fields:

te
S5te

S~ IS ,n,k!; tv
S5tv

S~ IS ,n,AS,NS!. ~14!

As shown below, in the general case the elastic stress te
te
S is a 233 tensor whose gradients represent tangential

normal elastic forces. The elastic tensorte
S obeys: te

S5IS

•te
S . On the other hand,tv

S is a 232 tensor@5,19# The viscous
surface stress tensortv

S obeys:tv
S5IS•tv

S5tv
S
•I v

S
•IS5I s•tv

S
•I ;

tv
S
•k5k•tv

S50. The decomposition of the interfacial mome
tum balance equation leads to the following tangential a
normal force balances:

2k•~ t12tN!•IS5~¹S•te
S!•IS1~¹S•tv

S!•IS , ~15!
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2k•~ t12tN!•kk5~¹S•te
S!•kk1~¹S•tv

S!•kk , ~16!

where the first balance equation~tangential stress! describes
interfacial tangential Marangoni flows, and the second~nor-
mal stress! balance equation is used to find the shape of
deforming interface. ForN/I interfaces the torque balanc
equation is coupled to the linear momentum balance eq
tion sincek andn appear in both equations. The viscoela
ticity of N/I is represented by (te

S ,tv
S).

In partial summary, Sec. II shows that the interfac
torque and linear momentum balance equations that des
orientation and shape dynamics are coupled through the
rector and the unit normal. The anchoring energy contribu
to both surface forces and surfaces torques. The easy ax
the surface depends on the relative sign and magnitude
the anchoring coefficients. The objective kinematic ten
that describes surface distortions is the 232 symmetric rate
of deformation tensorAS, and the objective vector that de
scribes the relative rotation of the director with respect to
surface motion is the surface Jaumann derivativeNS. These
basic results are used below to develop the expressions o
components of the viscoelastic stress tensor.

III. NEMATIC ELASTIC SURFACE STRESS TENSOR

The expression of the elastic surface stress tensor is fo
basically by noting thatFS5FS(n•k) and by using the iden
tity te

S5IS•te
S . The surface elastic stress tensor is given

the usual 232 symmetric interfacial tension contributionten
S

~normal stresses! and the 233 anisotropic contributionteb
S

~bending stresses!:

te
S5ten

S 1teb
S , ~17a!

ten
S 5FSIS . ~17b!

To find the expression for the bending stresses we can
the principle of virtual work. The change in surface fr
energydFt due to a displacementu is

dFt5E teb
S :~¹Su!TdS5E ]tan

] k
dk dS. ~18!

Using the fact that

dk52k•~¹Su!T, ~19!

we find that the bending stresses are given by@24–29#

teb
S 52IS•F]tan

]k
kG52IS•F S dtan

d~n•k! DnkG . ~20!

Parametrizing theN/I interface with orthormal unit sur
face base vectors (i 1 ,i 2), the normal and bending stress
become

ten
S 5FS@ i1i11 i2i2#, ~21a!

teb
S 5B13i1k1B23i2k, ~21b!

where the bending coefficients@B13,B23# are given by

B1352 i1•~dtan /dk!, ~22a!
e

a-
-

l
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i-
s
of
of
r

e
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nd

y

se

B2352 i2•~dtan /dk!, ~22b!

dtan /dk5@2t2~k•n!14t2~k•n!3#n. ~23!

The bending coefficients@B13,B23# are the projections of the
derivative of the interfacial free energy with respect to t
unit normal onto the unit surface vectors (i1 ,i2). The bend-
ing coefficients@B13,B23# are proportional to the amount o
surface energy storage when the director deviates from
easy axis and to the orientation of the director with respec
the interface.

Two important properties of the elastic surface stress t
sor, to be frequently used in the rest of the paper, are~i! the
principal orientations at which bending stresses vanish,
~ii ! the orientations corresponding to the extrema in bend
stresses, as follows.

A. Principal orientations

The principal orientations of the elastic surface stress t
sor are defined as the surface director orientations at w
the surface stress tensor is diagonal, that is, the elastic s
tensor has only normal~tension! components. It turns ou
that for nematic interfaces bending stresses vanish when
mal stresses achieve their extrema. This is a consequen
the fact that the magnitudes of the normal stresses aretan
while the magnitudes of the bending stresses are proporti
to d(tan)/dk. From the above discussion it follows that th
principal orientations occur at the following surface direc
orientations.

~a! t2/2t4.0, t2,0 andt2/2m4.0, t2.0

n•k51, ~24a!

n•k50. ~24b!

For these two sets of parametric conditions, normal stres
extrema and zero bending stresses occur at planar and
meotropic director orientation.

~b! 21,t2/2t4,0, t2,0 and21,t2/2t4,0, t2.0

n•k51, n•k50, ~25a!

k•n56A2
t2

2t4
. ~25b!

For these two sets of parametric conditions, normal str
extrema and zero bending stresses occur at the planar
meotropic, and oblique director orientations.

B. Bending stress extrema

The extrema in bending stresses is found by solv
d2(tan)/d

2k50,
~a! t2/2t4.0, t2,0, andt2/2t4.0, t2.0

~k•n!25H 2S t2

t4
23D1F S t2

t4
23D 2

28
t2

t4
G1/2J Y8.

~26!
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In this case there is only one stress extremum at a dire
angle lying between the planar and homeotropic orientatio

~b! 21,t2/2t4,0, t2,0 and21,t2/2t4,0, t2.0

~kNa
•n!25H 2S t2

t4
23D6F S t2

t4
23D 2

28
t2

t4
G1/2J Y8.

~27!

There are two director orientations of zero bending str
between their three extrema.

In partial summary, Sec. III provides a concise derivat
of the surface elastic stress tensor, and characterizes the
sion and bending components for the different anchor
cases. The principal directions of the surface elastic st
tensor are derived and discussed.

IV. ANISOTROPIC INTERFACIAL ELASTICITY:
MARANGONI AND NORMAL FORCES

The physical significance of the normal and bending co
ponents of the surface stress tensor is clear and evident w
one considers the net surface forces engendered by their
face gradients:

f5¹S•t5 H F dtan

dn•kGk•~¹Sn!TJ •IS

surface gradients in normal stresses

1H 22HS dtan

dk
•kD2¹S•S dtan

dk D J k.

surface gradients in bending stresses

~28!

The normal stresses (t11,t22) generate tangential Ma
rangoni forcesfNi :

fni5H F dtan

dn•kGk•~¹Sn!TJ •IS , ~29!

as well as the usual normal forcesfn'

fn'5$2HFS%k. ~30!

The tangential forcesfni are the nematic Marangoni force
@28,29# caused by surface gradients of the director and
independent of curvature. The normal forcesfn' exist only in
the presence of curvature, as for isotropic materials. For
anchoring energytan given in Eq.~12! the Marangoni force
fni is given by

fni5H F dtan

dn•kGk•~¹Sn!TJ •IS

5$~2t2@n•k#14t4@n•k#3!k•~¹Sn!T%•IS . ~31!

Assuming thatn5n(x1), and that asx1 increases by a dis
tanceL the director rotates from planar to homeotropic, t
following Marangoni force phenomenology arises.

~i! t2/2t4.0 andt2.0, the Marangoni force is directe
from the planar to homeotropic orientation region.

~ii ! t2/2t4.0 andt2,0, the Marangoni force is directe
from the homeotropic to the planar orientation region.
or
s.

s

en-
g
ss

-
en
ur-

re

e

~iii ! 21,t2/2t4,0 and t2,0, the Marangoni force is
directed from the homeotropic and planar orientation regi
towards the oblique@cos(n•k)5A2t2/2t4# region.

~iv! 21,t2/2t4,0 and t2.0, the Marangoni force is
directed from the oblique@cos„n"k)5A2t2/2t4] orientation
region towards the homeotropic and planar orientation
gions.

As the name implies bending stresses generate only
mal forcesfb' ,

fb'5H 22HS dtan

dk
•kD2¹S•S dtan

dk D J k ~32!

and exists because nematics have an anisotropic surface
sion

fb'5
dtan

d~n•k!
@2¹S•n22H~n•k!#k

2
d2tan

d~n•k!2 @kn:¹Sn2nn:b#k. ~33!

In the presence of interfacial director gradients the norm
force fb' exists even in the absence of curvature (H50,b
50), and its magnitudef b'uplanar

in this case is

f b'uplanar52
dtan

d~n•k!
~¹S•n!2

d2tan

d~n•k!2 ~kn:¹Sn!. ~34!

Thus we find the surprising result planar interfacesH
50,b50) between nematics and isotropic materials m
have a normal pressure jump if the surface director orien
tion is space-dependent. A similar observation has been
sented previously by Papenfuss and Muschik@35# who note
that normal stresses may not vanish even in the case of
nar interfaces.

In partial summary, Sec. V shows the main characteris
of the tangential and normal elastic forces. It is shown t
the tangential Marangoni forces arise due to interfacial dir
tor gradients. Normal forces may persist even in planar
terfaces if interfacial director gradients exist. Thus even
planarN/I interface may accommodate pressure jumps.

V. INTERFACIAL ENTROPY PRODUCTION
AND CONSTITUTIVE EQUATIONS

In this section constitutive equations for the surface ex
stress tensortv

S and the surface viscous molecular fieldhv
S are

derived for isothermal, compressibleN/I interfaces. As
noted in the literature@1#, incompressible interfaces are ra
or non-existent and surface dilational effects must be ta
into account. To find expressions for the surface extra st
tensortv

S and the surface viscous molecular fieldhv
S we iden-

tify the forces and fluxes that contribute to the product
temperature times the surface rate of entropy productionD,
as follows

D5tvs
s :AS1tva

s :WS1hvi
S
•S IS•

dni

dt D1hv'
s
•S kk•

dn'

dt D ,

~35!
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wheretvs
s is the surface symmetric extra stress tensor,tva

s is
the surface asymmetric extra stress tensor,hvi

S is the parallel
component of the surface viscous molecular field,dni/dt is
the total derivative of the parallel director component,

dni

dt
5

]ni

]t
1vS

•¹Sni , ~36a!

ni5IS•n. ~36b!

hv'
S is the normal component of the surface viscous mole

lar field,dn' /dt is the total derivative of the normal directo
component,

dn'

dt
5

]n'

]t
1vS

•¹Sn' , ~37a!

n'5kk•n. ~37b!

The 232 anitsymmetric extra stress tensortva
S can be written

in terms of the tangential viscous molecular fieldhvi
S :

tva
S 5

1

2
@hvi

S ni2nihvi
S #, ~38!

which shows that whenn5k, the interface is Newtonian an
tva
S 50. Eliminatingtva

S , D becomes

D5tvs
S :AS1hvi

S
•NS1hv'

S
•kk•

dn'

dt
, ~39!

which shows that only the tangential fluxes (tvs
S ,hvi

S ) are
coupled. Expanding the tangential fluxes (tssv,hvi) in terms
of the tangential forces (AS,NS)

tvsi j
S 5Hi jkl

S Alk
S 1Gi jk

Sl Nk
S , ~40!

hvi i
S 5Gi jk

S2 Ak j
S 1Mi j

SNj
S , ~41!

where by Onsager reciprocal relations the matrix coefficie
satisfy Hi jkl

S 5Hkli j
S ; Gi jk

S1 5Gki j
S2 , and Mi j

S5M ji
S . Imposing

symmetry restrictions of forces and fluxes gives:Hi jkl
S

5H jikl
S 5Hi jlk

S ,Gi jk
S1 5Gjik

S1 ,Gi jk
S2 5Gik j

S2 . Expressing the ma
trix coefficients in terms ofni and I s we find

tvs
S 5a1

SAS:nininini1
1
2 g2

S@NSni1niNS1IS~NS
•ni!#

1a4
SAS1 1

2 ~a5
S1a6

S!~AS
•nini1nini•AS!

1a7
Snini~ni•NS!1b1

S~ IS :AS!1b2
S@nini~ IS :AS!

1IS~nini :AS!#, ~42!

hvi
S 5g2

SAS
•ni1g1i

S NS1a7
Sni~nini :AS!1

g2
S

2
ni~ IS•AS!.

~43!

The expression fortvs
S satisfies the restrictions on the sym

metric component of the surface stress tensor, namelytvs
S

5I s•tvs
S 5tvs

S
•I s5I s•tvs

S
•I . The expression forhvi

S also satis-
fies the restrictionhvi

S 5IS•hvi
S . The coefficients $a1

S ; i
51, . . . ,7%,$g2

S ,g l i
S%,$b1

S ,b2
S% have units of surface viscos
-

ts

ties and are analogous to the Leslie coefficients@20#. The
coefficient g i i

S is the tangential rotational viscosity alread
discussed in the literature@15–17#.

The normal component of the molecular fieldhv'
S is un-

coupled to the tangential viscous flow process

hv'
S 5g1'

S kk•
dn'

dt
, ~44!

whereg l'
S is the normal rotational viscosity. The use of tw

different rotational viscosities (g l i
S ,g l'

S ) was also part of the
Kleman-Pikin mode@15# for surface dissipation. The anti
symmetric part of the extra stress tensortva

s computed from
tva
S 5@hvi

S ni2nihvi
S #/2 is

tva
S 5

g2
S

2
~AS

•nini2nini•AS!1
g1i

S

2
~NSni2niNS!. ~45!

Using the relations

g1i
S 5a3

S2a2
S , ~46a!

g2
S5a3

S1a2
S5a6

S2a5
S , ~46b!

where the second inequality follows from Onsagers relati
the total surface extra stress tensortv

S and surface viscous
molecular fieldhv

S become

tv
S5a1

SAS:nininini1a2
SniNS1a3

SNSni1a4
SAS1a5

Snini•AS

1a5
SAS

•nini1a7
Snini~ni•NS!1b1

SIS~ IS :AS!

1b2
S@nini~ IS :AS!1IS~nini :AS!#, ~47!

hv
S5g2

SA•ni1g1i
S NS1a6

Sni~nini :AS!1
g2

S

2
ni~ IS :AS!

1g1'
S kk•

dn'

dt
. ~48!

The total number of independent surface viscosity coe
cients is nine. For incompressible interfaces (IS :As50) the
number reduces to seven. For incompressible interfaces
planar orientation (ni•Ns50) the number reduces to five a
for the bulk nematodynamics equations. Equations~47! and
~48! contain the necessary information to solve dynami
problems involving deformingN/I interfaces.

The surface rate of entropy production is positive defin
if the following inequalities are obeyed:

1
4 ~a1

S12a4
S1a5

S1a6
S!1b1

S1b2
S>0, ~49!

a4
S

2
1b1

S>0, ~50!

2a4
S1a5

S1a6
S>0, ~51!

g1i
S >0, ~52!

g1'
S >0, ~53!
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~2a4
S1a5

S1a6
S!g1i

S 2~g2
S!2>0, ~54!

a4
S>0, ~55!

where to obtain the inequalities we used a previously gi
methodology@36#. The thermodynamic inequalities~50! and
~55! of the Boussinesq surface fluid@1,5# are recovered when
all coefficients except ofa4

S and b1
S are set to zero. The

inequalities are also consistent with those of bulk inco
pressible nematics wheren•N50, trA50, andb1

S5b2
S5a7

S

50. Inequalities~49! and ~50! are the dilational viscosities
~see Sec. VII! of the N/I interface when the director is tan
gential and normal, respectively.

The Boussinesq surface fluid@1,5# is recovered in the
present theory by setting all the interfacial viscosities in E
~47! excepta4

S and b1
S equal to zero, and the surface ext

stress tensor becomes

tv
SuBoussinesq5a4

3As1b1
SI s~ I :As!, ~56!

wherea4
S/2 is the interfacial shear viscosity and

hs5
tv
S :I s

2~ I s :As!
5

a4
S

2
1b1

S , ~57!

is known as the dilational viscosity. For Newtonian inte
faces it is found that the interfacial dilational viscosity is
the same order of magnitude as the interfacial shear visco
@1#. Thus in contrast to bulk behavior, assuming compre
ible interfaces appears to be just as necessary for Newto
and nematic interfaces.

Another check into the consistency of the present mo
can be obtained by considering homeotropic surface dire
n

-

.

ity
s-
an

el
or

orientation. In this case the surface director orientation
along the unit normal:n5k, and thereforeni50. Homeotro-
pic surface director orientation results in surface isotropy
cause the plane of transverse isotropy is the interface its
Thus for hometropic alignment the present model should
come equivalent to the classical Boussinesq surface fl
model. Indeed by settingni50 in Eq. ~47! we find that re-
sulting expression is identical to Eq.~56!, and that Eq.~38!
yields: tva

S 50. Thus we can assert that for hometropic s
face orientation the interfacial viscous modes are identica
those describe by the classical Boussinesq Eq.~56!.

In partial summary, Sec. V presents the surface rate
entropy production, and identifies the couplings betwe
232 tangential tensors and two component tangential v
tors. Constitutive equations for the surface extra stress te
and the surface viscous molecular field are found by expa
ing forces and fluxes and using irreversible thermodynam
principles. Inequalities of the surface viscosities are obtai
and shown to be consistent with the Boussinesq surface fl
The extra stress tensor is shown to be consistent with
Boussinesq constitutive equation appropriate for the Ne
tonian interface.

VI. DYNAMIC INTERFACIAL TENSION

Dynamic surface tensiont̄ is a measure of the local in
tensity of tension on a deforming surface and is given by
average normal surface stress@1#:

t̄5 1
2 I s :tS. ~58!

According to previous results the total surface stress ten
for a N/I interface is
nsor the
tS5a1
SAS:nininini1a2

Sn¸N
S1a3

SNSni1a4
sAS1a5

Snini•AS1a6
SAS

•nini1a7
Snini~ni .NS!1b1

SIS~ IS :AS!

1b2
S@nini~ IS :AS!1IS~nini :AS!#2IS•F S dtan

d~n•k! DnkG1FSIS . ~59!

The dynamic interfacial tensiont̄ contains in addition to the thermodynamic interfacial tensionFs , nonequilibrium contribu-
tions arising from compressible and director/flow coupling effects. For the present anisotropic viscoelastic stress te
dynamic interfacial tensiont̄ is

t̄5FS1
a1

S

2
~AS:nini!~ni•ni!1

a4
S

2
~ I s :AS!1 1

2 ~a5
S1a6

S!~AS:nini!1
a7

S

2
~ni•ni!~ni•nS!1g2

S~NS.ni!1b1
S~ IS :AS!

1
b2

S

2
@~ni•ni!~ I s :AS!12~nini :AS!#. ~60!

Thus the dynamic interfacial tension is anisotropic:t̄5 t̄(ni). Its two characteristic values are the tangential (t̄ i) and normal
( t̄') dynamic interfacial tensions:

t̄ i5t01
1

2
~a1

S1a5
S1a6

S12b2
S!~AS:nini!1S a4

S

2
1b1

S1
b2

S

2 D ~ IS :AS!, ~61!

t̄'5t01t21t41Fa4
S

2
1b1

SG~ IS :AS!. ~62!

The anisotropy in the dynamic interfacial tensionDt̄ contains the following static and dynamic contributions,
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Dt̄5 t̄ i2 t̄ i5t21t42 1
2 ~a1

S1a5
S1a6

S12b2
S!~AS:nini!2S b2

S

2 D ~ IS :AS!. ~63!
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ThusDt̄ is a representative measure of the anisotropic s
face viscoelasticity ofN/I interfaces since it is a function o
„tan(1),AS,ni….

In partial summary, in Sec. VI the dynamic interfaci
tension for aN/I interface has been defined, its express
has been derived and used to characterize the basic a
tropic viscoelasticity of theN/I interface.

VII. INTERFACIAL DILATIONAL VISCOSITIES

Dilational interfacial dissipation in theN/I interface
arises during expansion or contraction flow, as it occurs
example during gas bubble growth or bubble shrinkage
nematic liquid crystal. For example, injecting a gas at a r
Q into a nematic liquid crystal using a thin capillary tub
creates an expanding gas bubble. As the nematic/gas i
face grows, elasticity is stored and energy is dissipated
the growing interface. If gas flows into the bubble of radiua
at a volumetric flow rateQ, the surface rate of deformatio
tensor and its trace are given by@1#

AS5IS

Q

4pa3 , ~64!

AS:IS5
Q

2pa3 5V, ~65!

whereV is the fractional rate of dilation of the bubble su
face. To compute the dilational viscosityhS we replace Eqs.
~64! and~65! into Eq. ~57!. Not unexpectedly, forN/I inter-
faces the dilational viscosity is anisotropic and a function
the director orientation: hS5hS(n). The orientation-
dependent dilational viscosity is characterized by the tang
tial dilational viscosityh i

S , and the normal dilational viscos
ity h'

S , given by

h'
S~n5ni!5 1

4 ~a1
S12a4

S1a5
S1a6

S!1b1
S1b2

S , ~66!

h'
S~n5k!5

a4
S

2
1b1

S , ~67!

wheret'
S is, as expected, identical to the Newtonian res

given in Eq.~57!. The anisotropy in the dilational viscosity
or equivalently, its deviation from the Newtonian case is

h i
S2h'

S5 1
4 ~a1

S1a5
S1a6

S!1b2
S . ~68!

Measurements of the dilational viscosities, including surfa
waves, droplet deformation, and maximum bubble press
method are discussed in the literature@1#. The bubble pres-
sure method is the most accurate and the theory behind
experiment is basically that given in this section.
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In partial summary, in Sec. VII the dilational viscosity o
the N/I interface has been defined, and its characteristic
isotropy has been derived. A method for its measurement
been suggested.

VIII. INTERFACIAL SHEAR VISCOSITIES

In bulk nematic shear flows the Miesowicz viscosities a
measures of the viscous anisotropies@20,24#. For example
for a simple shear flow defined by the velocity fieldv:

v~y!5~vx,0,0!, vx5ġy ~69!

where ġ is the constant shear rate, the following thr
Miesowicz viscositiesh i ,i 51,2,3 arise

tyx5h i ġ, i 51,2,3, ~70!

where tyx is the nematic shear stress, and the value oi
defines the director orientation along thex, y, and z axis,
respectively. In this experiment the director is fixed by usi
a sufficiently strong magnetic field. For rodlike nematic li
uid crystals the following viscosity orderings are predict
@24# and measured@20#

h2.h3.h1 . ~71!

As similar situation arises in interfacial planar shear flo
on planar interfaces, and different shear viscosities are
dicted according to whether the director is aligned along
velocity direction, the velocity gradient direction, or the un
normal. We consider a planar interface spanned by thex-y
axes, with a unit normalk along thez direction. As in the
bulk case we define the following interfacial shear viscosit
~i! h1

S :n parallel to the surface velocity~x! direction; ~ii !
h2

S :n parallel to the surface velocity gradient~y! direction;
~iii ! h3

S :n parallel to the surface vorticity~z! direction.
The surface velocity field for an homogeneous sim

shear flow in a planar interface is

v05vi
05~ ġSy,0,0!. ~72!

The nonzero components ofAS and NS are Axy
S 5Ayx

S

5ġ/2;Ni
S52ġSnj /2,i 5x,y. Substituting into the surface

extra stress tensor we find the following three surface sh
viscosities:

h1
S5 1

2 ~a3
S1a4

S1a6
S!, ~73a!

h2
S5 1

2 ~2a2
S1a4

S1a5
S!, ~73b!

h3
S5

a4
S

2
. ~73c!

Predicting the ordering in terms of magnitudes of the surf
viscosities requires a mesoscopic model of interfacial v
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cosities, which has not yet been developed. Since the sur
shear viscosities are functions of the nematic surface sc
order parameter@11,12# it is likely that a model based on
excess viscosities will predict ordering reversals in the ord
ing of the magnitudes of the three shear viscosities w
compared to the bulk case@~Eq. ~71!#.

In partial summary, Sec. VIII presents the interfac
shear viscosities, and in analogy to the bulk nematic sh
flow case, it defines the three basic shear viscosities f
planar surface shear flow, when the director is aligned al
the velocity direction, the velocity gradient direction, and t
unit normal. It is noted that to determine the ordering of t
magnitudes of the interfacial shear viscosities requires a
soscopic model based on excess viscosities.

IX. CONCLUSIONS

A theory for anisotropic viscoelasticity of nematic
isotropic viscous fluid interface has been derived and use
identify the interfacial material properties and to character
the principal elastic, viscous, and viscoelastic respo
modes. The anisotropic component of the surface tensio
shown to generate tangential Marangoni elastic forces an
well as normal forces. Normal forces may exist even un
planar interfaces, implying that pressure jumps may exis
flat interfaces. The viscoelastic nature of the nema
isotropic viscous fluid interface is embodied by the dynam
surface tension, a material property that consists of the u
interfacial tension terms as well as interfacial dilational v
cosities contributions. The dynamic surface tension is an
ill
ce
lar
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tropic, and hence depends on the interfacial director orie
tion. The dilational viscosity of the nematic-isotropic visco
fluid interface is another anisotropic material property th
describes dissipation modes during inflation or deflation,
in bubble growth or collapse. It is shown that the anisotro
arises because viscous resistance to interface growth
shrinkage depends on the director orientation; when the
rector is orthogonal the well-known Boussinesq surface fl
result is recovered. Finally, interfacial shear viscos
anisotropies are analogous to the Miesowicz shear bulk fl
viscosities, and three basic material properties emerge
cording to whether the director is oriented along the inter
cial velocity direction, its gradients, or the unit normal, r
spectively.

The theoretical framework of anisotropic viscoelastic
of nematic-viscous fluid interfaces presented here, includ
the interfacial tension, dynamical interfacial tension, inter
cial shear viscosities, interfacial dilational viscosities, a
tangential Marangoni forces provides the necessary tool
measure interfacial material properties and to analyze in
facial phenomena such as interfacial instabilities, thin liqu
film hydrodynamics, and nematic freely suspended films a
foams.
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